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ABSTRACT 

Kamotskii proved that i f f E  S has Hayman index a then, for p = 1, 2, 3, 

f; f: (1) If(reit)lPdt > lak(re~t)lPdt, 0 < r  < 1. 
x 

In this paper we extend Kamotskii's result. We prove that if f has Hayman 
index a and its logarithmic coefficients ~'n satisfy ly, I --< l/n for all n, then, 
f o r 0 < r <  1, 

f; (2) ¢;(loglf(rei')l)dt >-_ O(loglak(rei')l)dt 
x 

for all convex increasing functions ¢(x) defined on R and give examples which 
show that this is not true in general. Also, we prove that (1) remains true for 
2 < p < 3 and generalfand for p = 4 i f fhas  real Taylor coefficients. 

1. Introduction 

Let D denote the unit disc {z :l z I < 1 }. Forp  > 0 and g analytic in D, define 

Let S be 

Mr(r'g)=(-~nf~ Ig(reit)lPdt) I/p, 0 < r < l ,  

M~(r,g)=Max Ig(z)l, 0 < r <  1. 
Izl =r 

the class of functions f analytic and univalent in D with 
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f (0 ) - -0 ,  f ' (O)= 1. Hayman [7, 8] (see also [5, pp. 157-158]) proved that if 

f E  S then the limit 

(1) a = lim r-I(1 - r)2M~(r, f )  
r ~ l  

exists and 0 < a < 1; furthermore, a = 1 if and only if f is a rotation of  the 

Koebe function k ( z ) =  z/(1 - z )  2. If a > 0 then f h a s  a unique direction of  

maximal growth, i.e. there exists a unique 00~[0,2n)  such that 

(1 - r)21f(rg°o)l --,a, as r--- 1. In fact, we have 

(2) If(rei°°) I >- ak(r), 0 < r < 1, 

(3) [f(reieo) [ ,-, ak(r), as r --- 1. 

The number a is called the Hayman index of f and we will denote by S(a) the 

class of  those f ~  S whose Hayman index is a. 

Hayman [7, 8] proved that i f f ( z ) =  Y a,z" ES(a)  then la. [/n--,a. Milin 

obtained in [12] (see also [5, pp. 162-166]) a simplified proof of  this result 
which is known as Hayman's regularity theorem. 

In [1] Baernstein proved that the Koebe function is extremal for a 

large class of problems about integral means in the class S. He proved that 
i f f E  S then 

f_ 5_ (4) ~ + loglf(reit)l)dt < ~ + loglk(re")l)dt, 0 < r  < 1, 
x /t 

for all convex increasing functions ~(x) defined on R. In particular, for 
0 < p < oo, the Koebe function has the largest LP-means among all the 
functions in the class S. 

Kamotskii studied in [11] the integral means of functions in the classes S(a). 
He proved that i f f E  S(a) then, for p = 1, 2, 3, 

(5) Mp(r, f )  >--_ Me(r, ak), 0 < r < 1. 

The purpose of this paper is studying whether or not Kamotskii's result 

can be generalized to cover other integral means. First we study the possibi- 

lity of this generalization in the direction of (4): Let f E S ( a ) ,  is it true 
that, for 0 < r < 1, 

~loglf(rei ') l)dt >= ¢(loglak(re")l)dt 

for all convex increasing functions ¢(x) defined on R? We will show that the 
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answer is affirmative if we impose some restrictions on f but not in general. 
Then, in section 3, we will prove (5) for some other values ofp.  

2. Baernstein type inequalities 

Associated with each function f in S are its logarithmic coefficients 7. de- 
fined by 

(6) log f(z---)) = 2 ~ y.z", z E D .  
Z n - I  

The logarithmic coefficients of the Koebe function are y, = 1/n. We prove 

THEOREM 1. Let 0 < a < 1 and f ES(a). I f  the logarithmic coefficients y, of  
f satisfy I Y, I < 1/n for all n, then 

f; £ (7) ~loglf(re")l)dt >= ¢)(loglak(re~t)l)dt, O < r  < 1, 

for all convex increasing functions O(x ) defined on R. 

PROOF. We may assume without loss of generality that 00 = 0 is the 
direction of maximal growth off.  Thus, 

If(r) [ > ctk(r), 0 < r < 1. (8) 

Define 

(9) 

According to 
show that 

(10) 

u(z) = log ~ , v(z )= log f - ~  (z E D). 

[1, Prop. 3], the inequality (7) will hold provided we can 

u*(z)<v*(z) ,  z ~ D + = { z E D : I m z > O } ,  

where, for 0 < r < 1 and 0 < t < rt, 

(11) U*(reit) = Sup f U(rei*)ds. 
IE1-2t J E 

Notice that, since I k(re")l is a symmetric function oft on [ - tt, n], decreasing 

on [0, n], 

f_ (12) u*(re") = u(re")ds. 
~ t 

Define 
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(13) 

Then, since v, < v *, (10) will follow from 

(14) u*(z) < v,(z), 

INTEGRAL MEANS 

v,(re") = f ~ t v(re~')ds' 0 < r < 1, 

z~D +. 

47 

0 < t < n .  

But, since I?kl ~ 1/k and Isinxl ~ Ixl, (8)implies 

~ ( k - R e ? k )  ksinkt k~ - (1-k-Re,k) ksinktl k~l r k < 1 r 

_--<t k- l~(~--Re?k)r  k 

t log k(r) 
=2 f(r) 

_-<- log t, 0 < r < l ,  0 < t < n .  
2 

This proves (15) and finishes the proof of Theorem 1. 

The inequality 17n [ --< lln (n = 1, 2, 3 . . . .  ) is known to be true for starlike 
functions, however we should remark that, as Eenigenburg and Keogh proved 
[6, Th. 5], the rotations of the Koebe function are the only starlike functions 

0 < t  <ft .  

Thus, (14) is equivalent to 

~ (l_k )rksinkt (~ 1) 
( 1 5 )  - Re Yk ~- _--< log t ,  

k - I  
0 < r < l ,  

V(reit) = f ~t log ak(re~) 

= R e  l o g a + 2  ~ --7 rke iks ds 
t k - I  

k - 1  k 

To prove (14) we argue as follows. Define V -- u* - v.. Then (12), (13) and 
the definitions of u and v show that 



48 D. GIRELA Isr. J. Math. 

with positive Hayman index and, hence, Theorem 1 says nothing for starlike 
functions. 

The inequality 17, I < 1/n fails in general, even in order of  magnitude. In 
fact, Pommerenke constructed in [14] (see also [15, Th. 5.4 and exer. 3, p. 138] 
and [5, Th. 8.4]) a bounded function f E S  with logarithmic coefficients 
~,. ÷ 0 ( n - ° 8 3 ) .  

Next, we shall give for each a E (0, 1) a simple explicit function f ~  S(a) for 
which the conclusion of Theorem 1 does not hold and, consequently, satisfying 

I~'. I > 1/n for some n. 
For ~ < d < 1, let f# be the unique function in S which maps D onto the whole 

w-plane slit along an arc on the circle I w I = d placed symmetrically with 
respect to the negative real axis and the part of the negative real axis from - d 
to - o c .  The functions fa have been extensively treated in the literature. 
Netanyahu proved in [ 1 3] that fa maximizes I f"(0)  I in the class Sa of functions 
f E  S whose image contains the disc I w I < d and Jenkins proved in [ 1 0] that 
the length of  the set of values on I wl -- d not covered b y f  is maximized byfa 
in the class S. We will show that the conclusion of Theorem 1 does not hold for 

the functions fa, ~ < d < 1. 
In order to give an explicit expression for f#, it is convenient to define p by 

(16) d =(p + l)2 ~ < d < l .  
4/92 ' 

Notice that as d increases from ~ to 1, p decreases from oc to 1. Then, given 
p > 1, the function 

F ( z )  = + - - = 
p j - -zJ -p  l-zj 

maps D onto Ri, the whole plane slit along the negative real axis, and 
F(O) = p  + p-~ - 2. The function 

6(¢) = ¢ + I _ 2 = (¢ - 
¢ ¢ 

maps the domain Rz bounded by i el -- 1 together with the portion of the real 

axis - oo __< ~ =< - l onto R3 and G(p) =p +p-~ - 2. Finally, the function 

-p)  
H(~) = 
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maps R2 onto a domain R3 bounded by an arc on I w l = p  placed sym- 
metrically with respect to the negative real axis together with the portion 
- oo < w < - p of  the latter and H(p) = 0. Then, the function g -- H o G-  1 o F 

maps D conformally onto R3 and g(0) = 0. Easy calculations show that g'(0) --- 
4p3/(p + 1) 2 and (1 - r)2g(r) .-. 4(p - l)2/p, as r --- 1. Hence 

(p  + 1) 2 
(17) - -  g(z) 

4a 3 

and the Hayman index Old offd is 

(18) O l d ( ? - - 1 ) 2 ( ? + 1 ) 2 ( ? 4  ----- 1 -  ~2) 2 . 

Notice that as d increases from ¼ to 1, Old decreases from 1 to 0 and, hence, we 

see that for each Ol ~ (0, 1) there exists exactly one d such that Old = Ol. Now we 
can prove 

THEOI~M 2. For ~ < d < l, 

C : (19) log + Ifd(ei')/dldt < log + Ioldk(ei')/dldt. 

Hence, the conclusion of  Theorem 1 does not hold for the functions fd, ~ < d < 1. 

PROOF. Notice that Ifd(e")l ->_ d and, hence, 

: ]  ~ l°g+ lfd(eit)ldldt = : : ~  l°glfd(e't)/(deit)ldt = - 27t l°g d. 

Now we turn to evaluate the integral on the right-hand side o f  ( 1 9 ) :  

: ~ .  l°g+ ~ d t - - : : ,  l°g+ 14dsian~(t/2,] dt 

f O n/2 Old = 4 log + dt 
4d sin 2 t 

oarCsin(%tl4d 112 
= 4  log .  Old. ~ dt 

4 d  s i n "  l 

4 arcsin (ad~"2 Io~ ad 8 ["~i"%/4d)~ log sin t dt. ~--- - -  / 

\4d/ ~ 4d ~, o 
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Now, (16) and (18) show that (ad/4d) = [(p -- 1)/p]2 and, hence, using (20) and 
(16), we see that (I 9) is equivalent to 

(21) ~,(p) > 0, l < p < o %  

where 

(22) 

__ f arcsin((p - l)/p) 
~ ( p ) = 8 a r c s i n  p - 1 log p 1 8 logsin t dt 

J o  P P 

p + l  
+ 4rt log - -  

2p 

To prove (21), observe that 

(23) ~(1) = O, 

and 

lim ~,(p) = 0 
p~oo 

(24) ~/'(P)=p(p -- I) p 2p+ " 

Now, it is a simple calculus exercise to show that ~'(p) -- 0 at most once in 
(1, ~ )  which, together with (23) and the fact that ~/ ' (p)> 0 i fp  is sufficiently 
close to 1, implies (21), finishing the proof of Theorem 2. 

3. LP-inequalities 

The basic step in the proof of Kamotskii's theorem is the following result 
proved by Kamotskii [ 1 1, p. 213] using the Grunsky inequalities: 

Let 0 < a < 1 and f ~S(a) .  Suppose that 00 = 0 is the direction o f  maximal  

growth o f f .  Then, for all z E D, 

(25) If(z) - f(~) I > o~l k(z) - k(~)l 

and 

(26) I f2(z) q- f2(z)[2 ~ a l k2(z) -t- k2(~ ) 12 

wheref2(z) = f(z 2) 1,2, k2(z) = k(z 2) 1,2. 

The inequality (5) follows from (25) for p = 2, 3 and from (26) for p = 1. 
Using (25), we shall obtain some extensions of Kamotskii's theorem. 

THEOREM 3. Let 0 < a < 1. I f  f E S(a) has real Taylor coefficients then 
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(27) M4(r, f )  > M4(r, ak), 0 < r < 1. 

To prove Theorem 3 we will need the analogue of  (2) for f ' .  

PROPOSITION 1. Let 0 < a < 1. I f  f ~ S(a) and Oo is its direction of maximal 
growth, then 

(28) If'(re~°°) i >= aM(r), 0 < r < 1. 

Proposi t ion 1 is obta ined  in [4, Cor. 1] as a consequence of  Bazilevich's 

inequali ty on the closeness between the logarithmic coefficients o f  f and those 
o f  z/(1 - e-i°oz) 2, 

I 1 -ik00 2 1 1 k 7k -- - e < log 
k-~ k = 2  

[2, 3] (see also [5, p. 160]) and it can also be obta ined from (25). However ,  we 

present here an elementary proof. 

PROOF OF PROPOSITION 1. We may assume without  loss o f  generality that 

00 = 0. For  0 < r < 1, let 

f / z  + r \  
- S ( r )  

f , ( z )  = 
(1 - r2)f'(r) 

Then f,  ~ S and, using (3), we see that, as p --+ 1, 

z E D .  

(1 _ p ) 2  

(1--r2)]f'(r)l ( l  _P+_.rl2 
1 + p r /  

a( l  + p r )  2 

(1 -- r2)(1 - r)Zlf'(r)l 

aM(r) 

Lf'(r) l 

( l - P )  2 f ( P + r l l  
(1 - p ) 2 1 f ( p ) [  --~ (1 - rZ)lf'(r)l \ ~ p r }  
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Hence, the Hayman index a(r) o f f  is 

= 

which, since a(r) < 1, implies 

otk'(r) 

If '(r) l 

If '(r) I ~> ak'(r). 

PROOf Or THEOREM 3. Let 00~ [0, 2rt) be the direction of maximal growth 
off .  Then Hayman proved [7, p. 277] that 

e -'°0 = lim a, + 1 
n - ~  an 

wheref(z) = Z anz n. Thus, since the coefficients an are real, we obtain that 00 is 
either 0 or n. If 00 -- rt then h(z) = - f(  - z) has real coefficients and its 
direction of maximal growth is 0. Consequently, we may assume without loss 
of generality that 0o = 0. 

The inequality (27) will follow from 

a 2 f~ Ik(reit)14dt < f~ If(reit)[21k(reit)lZdt, 0 < r  < 1. (29) 
J -  x ~ / -  x 

Indeed, by H61der's inequality, 

~ If(re 't) 121 k(re 't) 12dt ~ M4(r, f)2M4(r, k) 2 

and, hence, (29) implies 

aZM4(r,k)4<-<_M4(r,f)ZM4(r,k) 2, 0 < r  < 1, 

which is equivalent to (27). 
Thus, it only remains to prove (29). It follows from (25) that, setting z = re", 

y ~  I f ( z ) - f ( , ) l  2 f_ '  I k ( z ) -  
I 1 - z 14 d t  ~ ot 2 k(;~) I s dt 

x l1 - z {  4 

or, equivalently, 

f ~  I f(z) 12 
x l l - z l  4 

where 

- - d t - a ~  f _ ~(z)l~ dt > Re f ~  g(z) 
x l1 - z l  4 = ~ l1 - z l  -------~4dt 

g ( z )  = f ( z ) f ( z )  - 
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Hence,  (29) will hold provided we can prove that 

f ~ g(reit) 14 dt > O, 0 < r < l .  (30) Re - [ 1 - r e  u = 

Notice  that, since f has real coefficients, f (2)  = f ( z )  and therefore 

g(z) = f (z )  2 - a2k(z) 2. (31) 

Define 

(32) 

We have 

zg(z) 
F(z) = ~ = g(z)k(z).  

(1 - z )  2 

f ~ f~_ g(re") r2e2~' g(rei') dt = 
" I 1 - re i' 14 , (1 - rei')2(re i' - -  r2) 2 dt 

1 f l  zg(z) =-; - r  ( l - -  - -  d z  

1 r F_(z)_ 
= - t  d i z l - r  (z - r2) 2 dz 

( F--(z- ) ) 
= 2n Res \ ( z  - r2) 2' r2 

_- 2riFt(r2). 

Not ice  that (31) and (32) show that 

(33) F '  = 2 ( i f ' -  a~kk')k + ( f 2  _ a2k2)k ,. 

Now, since f h a s  real coefficients, If'(r2) l = f ' (r  2) and [f(r2) l -- f ( r  2) which, 

together with (2), (28), (33) and the assumpt ion 00 = 0, impl ies  F'(r 2) >-_ O. This 

proves (30) finishing the p roof  o f  Theorem 3. 

Next  we shall prove that the inequality (5) remains true for 2 < p < 3. 

THEOREM 4. Let 0 < a < 1 and f E  S(a), then, for 2 < p < 3, 

M~(r, f )  >-_ Mp(r, ak), 0 < r < 1. 

Theorem 4 will follow from the following 

PROrOSITION 2. Let 0 < a < 1 and f ~ S ( a ) .  Suppose that 00 = 0 is the 
direction o f  maximal growth off .  Then 
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a2 fx [k(reit)12+¢dt < f x  If(reit)121k(reit)lcdt, 0 < r  < (34) 1, 
d -  ;[ ~ ;[ 

for every q with 0 < q < 1. 

PROOF OF PROPOSITION 2. Arguing as in the proof of Theorem 3 we see 
that (34) will hold provided we can show that, for 0 < q < 1, 

: g(reit) 12 ¢ dt > O, 0 < r < 1 
x I 1 - re it = 

(35) 

where 

(36) 

Now, it is easy to check that 

g ( z )  = f ( z ) f ( t )  - ,~k(z) 2. 

(37) f_ g(reit) dt =-l f t g(z)zq-1 d2. 
• ~ ~ I1 --reitl2q i zl-r(1 - -z )q(z  --r2) q 

In order to compute the integral on the right-hand side of  (37), notice that, for 

> 0 sufficiently small, 

f c, g(z)z  q- 1 dz = 0 
( 1  - z)¢(z - r2) q 

where C~ is the contour of  Fig. 1. 

Fig. 1. 



Vol. 65, 1989 INTEGRAL MEANS 55 

It is a simple exercise to prove that, for 0 < q < 1, 

0 = l i m  I [ "  g(z)Z q-I 
,-o ~ .3c, (1 - -  Z - ' ~  ~'~ r2) q dz 

1 f l  g(z)zq- l  
l ~t-r (1 - z)q(z -- r2) q 

Therefore 

1 ( "  g(z )z  q- 1 
(38) - L t z I=~ (1 -- z)q(z -- r2) q 

~r02 dz - 2 sin(rtq) g(s)s q- t ds. 
(1 - s)q(r z - s) q 

:o rs g( S )S q - 1 ds. 
dz = 2 sin(nq) (1 - -  S ) q ( r  2 - -  S) q 

Now, (36) and (2) show that if s > 0 then g(s) > 0 which, since 0 < q < 1, 

implies that the right-hand side of (38) is nonnegative. This proves (35) and 
hence Proposition 2 is proved. 

PROOF OF THEOREM 4. We may assume without loss of  generality that 

00 = 0 is the direction of  maximal growth off .  Then, if 2 < p < 3, we have by 
Proposition 2 and H61der's inequality 

f f a 2 I k(rei') IPdt < If(re~') 121 k(reit) I p- 2dt 
7t ;t 

< If(re") I'dt I k(re") IPdt 
7t 7t 

and hence 

a2 ( : : ,  I k(reit)lPdt) 2/p - - < ( f : x  I f(re't)lPdt) \ 2/p 

which proves the Theorem. 

4. Final remarks 

(i) First we note that Kamotskii's result for p = 1 can be obtained in an 

elementary way as a consequence of  the following inequality proved by 

Holland and Twomey in [9, p. 1018]: 

I f  g is analytic in D, then, for  0 < p < ~ ,  

(39) (1 - r2)M®(r 2, g) < Mp(r, g)P, 0 < r < 1. 

Now, i f  f ~ S ( a )  set g(z)  = f ( z ) / z .  Then M~(r 2, g) > ak(r2)/r 2 and (39) with 

p -- 1 shows that 
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Ml(r,g)~(l_r2)Otk(r2)__=~=~ot a f _  k ( ~  ~t)~ dt 
r 2 1 - -  r 2 2n 

which implies Mr(r, f )  > M~(r, ak ). 
This argument can be used for other values of p and also to estimate the 

integral means o f f ' .  In this way we obtain: 

l f f ~  S(a) then, for 0 < r < 1, 

(40) rMp(r, f )  > Mp(r ~, ak), p > 1; 

(41) Mp(r, f ' )  >= Mp(r 2, ak'), p > 1. 

(ii) The only place where we used that f h a d  real Taylor coefficients in the 
proof  of  Theorem 3 was to prove, with the notation used there, that F'(r ~) > 0 
which followed from g'(s) >___ 0, 0 < s < 1. This, and hence also the conclusion 
of  Theorem 3, would be true for general fES(a) ,  not necessarily with real 
coefficients, if the inequality (28) could be replaced by 

d 
dr [f(rei°°) I > ak'(r), 0 < r < 1 

but we do not know whether or not this is true. 

(iii) Even though Theorem 2 shows that the conclusion of  Theorem 1 does 
not hold for general fES(ot), the question of  whether or not the inequality 
Mp(r, f )  > Mp(r, ak) is true for all p > 0 remains open. We can prove that it is 
true for small values o fp  using the elementary fact that if h is analytic in D and 
t h(z) J > 1 for all z E D then, given p > 0, the function I h I p log l h I is subhar- 
monic in D. In a precise way, we have: 

Given 0 < a < 1 there exists p(a) > 0 such that i f  f ~S(a) and 0 < p < p(a) 
then 

Mp(r, f )  >= Mp(r, ak), 0 < r < 1. 

Indeed, let 0 < a < 1 andf~S(a) .  The distortion theorem [15, p. 21] shows 

that 

4f(z) > 1 >  1, ~ )  > 1, z E D  
otZ Ot 
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and therefore, for p > 0, the functions 

u ( z ) =  4f(z)P log 4f(z) , 
o~z otz 

INTEGRAL MEANS 

v(z)= 4k~(zZ) Plog ~ 

are subharmonic in D. For 0 < r < 1, define 

= J-F1[1[ ~4f(re it) p dt-:_1[1[ 4k(reit) p " h,(p) I a r  I ~ clt, 

Then 

f -~phr(P) = u(reit)dt - v(re")dt. 
1[ I[ 

p > 0 .  

57 

Hence, since S c H p (p < ½), the subharmonicity of u and v shows that, for 

0<p<½, 

(4)p 4 f _  d h,(p)  > 2n l o g - -  14k(e")l'logl4k(e't)[dt. (42) dp a 1[ 

Now, as p ~ 0, the right-hand side of (42) tends to 2n Iog(l/a) > 0. Hence we 

deduce that there exists p(o0 > 0 such that, for 0 < p < p(a), 

d 
dph,(p)>O, O < r < 1 ,  

which, together with the fact hr(O) = O, implies that, for 0 < r < 1, 

h,(p) > O, 0 < p < p(a), 

which proves our assertion. 
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